Publications of Maass, W

Select a view.
44 publication entries, 2 of them (printed in bold in the list) acknowledge the project support.
Jump to:
Book chapter
Conference contribution: poster
Other

Paper (reviewed)

Bill et al. 2010Bill, J., Schuch, K., Brüderle, D., Schemmel, J., Maass, W. and Meier, K.Compensating inhomogeneities of neuromorphic VLSI devices via short-term synaptic plasticityFront. Comput. Neurosci. (2010) 4:129.
doi:10.3389/fncom.2010.00129
abstract, BibTeX
Buesing and Maass 2009Buesing, L., and Maass, W.A Spiking Neuron as Information BottleneckNeural Computation (2010) 22(8): 1961-1992
doi:10.1162/neco.2010.08-09-1084
abstract
Häusler and Maass 2007Häusler, S. and Maass, W.A statistical analysis of information processing properties of lamina-specific cortical microcircuit modelsCerebral Cortex (2007) 17(1):149-162 fulltext
Haeusler et al. 2007Haeusler, S. and Maass, W. A statistical analysis of information processing properties of lamina-specific cortical microcircuit modelsCerebral Cortex (2007) 17(1):149-162 fulltext
Haeusler et al. 2008Haeusler, S., Schuch, K. and Maass, W.Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates.J. of Physiology (2009) 103(1-2):73-87 abstract
Kaske and Maass 2006Kaske, A. and Maass, W.A model for the interaction of oscillations and pattern generation with real-time computing in generic neural microcircuit modelsNeural Networks (2006) 19(5):600-609 fulltext
Klampfl et al. 2007bKlampfl, S., Legenstein, R. and Maass, W.Spiking neurons can learn to solve information bottleneck problems and to extract independent componentsNeural Comput. (2009) 21(4):911-59.
doi:10.1162/neco.2008.01-07-432
abstract
Legenstein and Maass 2006Legenstein, R.A. and Maass, W.A criterion for the convergence of learning with spike timing dependent plasticityAdvances in Neural Information Processing System (MIT Press). (2006) 18:763-770 abstract, fulltext
Legenstein and Maass 2007Legenstein, R. and Maass, W.On the classification capability of sign-constrained perceptronsNeural Comput. (2008) 20(1):288-309 abstract, fulltext
Legenstein and Maass 2007cLegenstein, R.A. and Maass, W.Edge of chaos and prediction of computational performance for neural microcircuit modelsNeural Networks (2007) 20(3): 323-334 abstract, fulltext
Legenstein et al. 2008Legenstein, R., Pecevski, D. and Maass, W.A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedbackPLoS Computational Biology (2008) 4(10): e1000180 abstract, fulltext
Maass et al. 2006Maass, W., Joshi, P. and Sontag, E.D.Principles of real-time computing with feedback applied to cortical microcircuit modelsAdvances in Neural Information Processing Systems (MIT Press) (2006) 18:835-842. abstract, fulltext
Maass et al. 2007Maass, W., Joshi, P. and Sontag, E. D.Computational aspects of feedback in neural circuitsPLOS Computational Biology (2007) 3(1):e165, 1-20 fulltext
Nessler et al. 2008Nessler, B., Pfeiffer, M. and Maass, W.Hebbian learning of Bayes optimal decisionsIn Proc. of NIPS 2008: Advances in Neural Information Processing Systems, MIT Press (2009) 21: fulltext
Nikolic et al. 2007Nikolic, D., Haeusler, S., Singer, W. and Maass, W.Temporal dynamics of information content carried by neurons in the primary visual cortexAdvances in Neural Information Processing Systems (2007) 19:1041-1048. MIT Press
Nikolic et al. 2010Nikolic, D., Haeusler, S., Singer, W. and Maass, W.Distributed Fading Memory for Stimulus Properties in the Primary Visual CortexPLoS Biol (2009) 7(12): e1000260
doi:10.1371/journal.pbio.1000260
fulltext
Pfeiffer et al. 2008Pfeiffer, M., Nessler, B., Douglas, R. and Maass, W.Reward-Modulated Hebbian Learning of Decision MakingNeural Computation (2010) 22(6): 1399-144
doi:10.1162/neco.2010.03-09-980
abstract
Rasch et al. 2008Rasch, M.J.,Gretton, A., Murayama, Y., Maass, W. and Logothetis, N.K. Inferring spike trains from local field potentialsJournal of Neurophysiology (2008) 99:1461-1476 fulltext
Steimer et al. 2008Steimer, A., Maass, W. and Douglas, R.Belief-propagation in networks of spiking neuronsNeural Computation (2009) 21(9): 2502-2523
doi:10.1162/neco.2009.08-08-837
abstract
Sussillo et al. 2007Sussillo, D., Toyoizumi, T. and Maass, W.Self-tuning of neural circuits through short-term synaptic plasticityJ Neurophysiol (2007) 97: 4079-4095 abstract, fulltext
Uchizawa et al. 2006bUchizawa, K., Douglas, R. and Maass, W.On the computational power of threshold circuits with sparse activityNeural Computation (2006) 18(12): 2994-3008 abstract, fulltext

Book chapter

Frégnac et al. 2006bFrégnac, Y., Blatow, M., Changeux, J.P., DeFelipe, J., Lansner, A., Maass, W., Markram, H., McCormick, D., Michel, C.M., Monyer, H., Szathmáry, E. and Yuste, R.Ups and Downs in the genesis of cortical computationIn: "Microcircuits: The Interface between Neurons and Global Brain Function Microcircuits: Dahlem Workshop Report 93". (Eds. Grillner, S. e. a.) Cambridge, USA: The MIT Press, (2006) pp. 397-437 fulltext
Legenstein and Maass 2006bLegenstein, R. and Maass, W.What makes a dynamical system computationally powerful?In S. Haykin, J. C. Principe, T.J. Sejnowski, and J.G. McWhirter, editors, New Directions in Statistical Signal Processing: From Systems to Brain. pages 127-154. MIT Press, 2007 abstract, fulltext
Legenstein and Maass 2007bLegenstein, R. and Maass, W.What makes a dynamical system computationally powerful?In S. Haykin, J. C. Principe, T. Sejnowski, and J. McWhirter, editors, New Directions in Statistical Signal Processing: From Systems to Brain, pages 127-154. MIT Press, 2007 abstract, fulltext

Conference contribution: poster

Maass, W.A model for computation in cortical microcircuitsUSA, Banburry Center, Cold Spring Harbour,Workshop "Models of Neural Circuits", April 2006
Maass, W.Experiments that would help to decide between competing models for cortical computationWorkshop of the MPI for Brain Research, Schloss Ringberg, Tegernsee, Germany, July 2006
Maass, W.Models for cortical computationLeipzig, Germany, Workshop on Information Theory and Neurobiology, July 2006
Maass, W.Neural circuits as analog computersEPFL, Lausanne, CH, Latsis Symposium, March 2006
Maass, W.Online computing in dynamical systems as a possible paradigm for auditory processingSorbonne, Paris, F,Workshop "New Ideas in Hearing", May 2006
Maass, W.Principles of real-time computing with feedback applied to cortical
microcircuit models
Conf. on Neural Information Processing Systems, Vancouver, CA, NIPS*05, December 2005
Maass, W.Unsupervised learning in neural circuitsEPFL-Lausanne, CH, Workshop on Synaptic Plasticity, June 2006
Buesing and Maass 2007Buesing, L. and Maass, W.Simplified Rules and Theoretical Analysis for Information Bottleneck Optimization and PCA with Spiking NeuronsProc. of NIPS 2007, Advances in Neural Information Processing Systems, volume 20. MIT Press, 2008 abstract
Klampfl and Maass 2009Klampfl, S. and Maass, W. Replacing supervised classification learning by Slow Feature Analysis in spiking neural networksProc. of NIPS 2009, Advances in Neural Information Processing Systems (2010) 22: 988-996. MIT Press, 2010 abstract
Klampfl et al. 2007Klampfl, S., Legenstein, R.A. and Maass, W.Information bottleneck optimization and independent component extraction with spiking neuronsProc. of NIPS 2006, Advances in Neural Information Processing Systems, volume 19. MIT Press, 2007 abstract, fulltext
Klampfl et al. 2009Klampfl, S., David, S. V., Yin, P., Shamma, S. A. and Maass, WIntegration of stimulus history in information conveyed by neurons in primary auditory cortex in response to tone sequences39th Annual Conference of the Society for Neuroscience, 2009
Legenstein et al. 2008bLegenstein, R., Pekevski, D. and Maass, W.Theoretical analysis of learning with reward-modulated spike-timing-dependent plasticityProc. of NIPS 2007, Advances in Neural Information Processing Systems, volume 20. MIT Press, 2008 abstract
Legenstein et al. 2009Legenstein, R., Maass, W., Chase, S.M. and Schwartz, A.B.Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learningProc. of NIPS 2009: Advances in Neural Information Processing Systems (2009) 22: 1105-1113 abstract
Liebe et al. 2009Liebe, S., Hoerzer, G., Logothetis, N.K., Maass, W. and Rainer, G.Long range coupling between V4 and PF in theta band during visual short-term memory39th Annual Conference of the Society for Neuroscience, 2009
Maass 2007Maass, W.Liquid computingIn Proceedings of the Conference CiE'07: COMPUTABILITY IN EUROPE 2007, Siena (Italy), Lecture Notes in Computer Science. Springer (Berlin), 2007. invited paper, in press. fulltext
Maass and Markram 2006Maass, W. and Markram, H.Theory of the computational function of microcircuit dynamicsS. Grillner and A. M. Graybiel, editors, The Interface between Neurons and Global Brain Function, Dahlem Workshop Report 93, pages 371-390. MIT Press, 2006 fulltext
Nessler et al. 2009Nessler, B., Pfeiffer, M. and Maass, W. STDP enables spiking neurons to detect hidden causes of their inputsNIPS 2009 abstract
Uchizawa et al. 2006Uchizawa, K., Douglas, R. and Maass, W.Energy Complexity and Entropy of Threshold CircuitsAutomata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I. Published by Springer as Lecture Notes in Computer Science (2006) 4051: 631-642 fulltext

Other

Maass, W.How could networks of neurons learn to carry out probabilistic inference?Videolecture (recorded May 2010, published 15 June 2010) at http://videolectures.net/mlss2010_maass_hcnon/ fulltext
Nikolic et al. 2007aNikolic, D., Haeusler, S., Singer, W. and Maass, W.Temporal dynamics of information content carried by neurons in the primary visual cortexProc. of NIPS 2006, Advances in Neural Information Processing Systems, volume 19. MIT Press, 2007. abstract


 
. 
 

3 August 2011